
   
Abstract—The Support Vector Method is an efficient learn-
ing algorithm. However, the prior selection of its free pa-
rameters through either the cross-validation of the training 
set or the VC-theory bounds is problematic when dealing 
with low-sized data sets. We propose the boostrap resampling 
to yield robust estimates of the free parameters under these 
circumstances. The effectiveness of the method is evaluated 
using both synthetic and real data, showing this is an effi-
cient framework when low number of data are available.   
 
Index terms—Support Vector Method, cross-validation, 
bootstrap,  resampling, actual risk. 
 

I. BACKGROUND AND MOTIVATION 

 
The Support Vector Method is a solid framework for 

general statistical learning problems [1,2,3]. At the heart 
of its advantages, it finds itself the intermediate feature 
space where the learning decision is arranged; its error 
function has no local minima, but rather an unique solu-
tion; and it can be formulated in non-linear problems 
through the use of different kernels . 

However, the method makes no allowance for two 
open issues; the tuning of the kernel parameter, related 
to the generalization capabilities of the machine, and the 
trade-off between the margin (distance between classes) 
and the losses. With a large amount of data, conventional 
cross-validation can help find the parameters minimizing 
the estimated error probability on the validation subset. 
For low-size data sets, splitting the set into training and 
test subsets leads to losses in the generalization capabili-
ties of the trained machine. A number of error bounds 
trying to base just upon the training set have been pro-
posed, such as the VC-dimension or the leave-one-out 
[1]. These bounds become extremely weak for low-size 
data sets, and more, they cast some doubt when faced to 
non-separable data. 

An estimation of the actual (i.e., whole, not only 
empirical) error probability upon the training set would 
allow to choice the free parameter minimizing this esti-
mated error. The bootstrap resampling techniques [4] 
can be used to trace an estimate of the error probability 
having a reduced bias towards the empirical risk. More-
over, this procedure is robust when faced to low-size data 
sets, and it needs no assumptions on the statistical distri-
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bution from the data, so it can perfectly work under the 
same premises than the SVM requires. 

The plan of the paper is as follows. Section II de-
scribes the SVM and the Vapnik’s actual risk bound for 
a classification problem. We then present the formulation 
of the bootstrap estimate upon the error probabil i ty for 
this learning machine in Section III . Section IV contains 
a toy example showing the adequate performance of the 
procedure for linear and non-linear classifiers and for 
both free parameters. A real data problem, related to the 
automatic arrhythmia discrimination in implantable de-
vices, is analysed in Section V. Finally, Section VI, con-
clusions are drawn. 

 

II . THE ACTUAL RISK AND THE SUPPORT VECTOR 

METHOD 

 
     Be a set of observed, labelled data: 
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where nRx ∈i
 and { }1,1 −+∈iy . Be a non-linear transfor-

mation ( )ixφ  to a usually unknown, higher dimensional 

space mR , and be a separating hyperplane in this space 
given by: 
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with respect to b,w  and subject to: 
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 lii ,,1,0 �=≥ξ ;    (5) 

where 
iξ are the losses, 

2w is the inverse of the class 

separation (margin), C represents a trade-off between the 
margin and the losses, and ( )⋅  represents a dot product in 

mR . By using the Lagrange theorem, Eq. (3) can be re-
written into: 
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which has to be minimized with respect to ib ξ,,w , and 

maximized with respect to ii µα , , subject to: 

 

 

Selection of the Free Parameters in the Support 
Vector Method Using Bootstrap Resampling 

Rojo-Álvarez, José Luis  
Artés-Rodríguez, Antonio 



liii ,,1,0, �=≥µα .   (7) 

      The solution is a linear combination of the training 
data. The samples with 0≠iα  are called the Support 

Vectors, and the classification function is built as a func-
tion of them. 
      Non-linear classifiers are built by taking the dot 
product in kernel generated spaces. This product uses 
kernels satisfying the Mercer conditions, this  is, semi-
defined positive kernels [3]. In this case, the problem 
corresponds to maximize: 
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with classification function: 
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which is known as the Support Vector Method. Some 
common kernels are: 
 
1. Linear:        ( ) ( )yxyx ⋅=,K . 

2. Polynomial: ( ) ( )dK yxyx ⋅=, . 

3. Radial Basis Functions (RBF): 
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     We can see that there are two free options; the kernel 
parameter in non-linear classifiers (polynomial degree, d, 
or  width of the RBF unit, σ ), and C in all of them. 

Vapnik [1] proposes a way of tuning these parame-
ters from the concept Actual Risk Bound and VC dimen-
sion. For a given loss function on a classification learn-
ing problem,  

 
( )( )wx,, fyL , 

the Risk Function is defined as the mean value of this 
loss function: 

 

( ){ } ( )( ) ( )∫= dydypfyLRE xxwxw ,,,       (11) 

where ( )yp ,x  is the join probability density function of 

the data. Vapnik shows [1] that, for a given confidence 
level [ ]1,0∈η , the following inequality is held: 
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where ( )wR  is the Actual Risk, ( )wempR  is the data error 

probability or Empirical Risk, and h is a measure of the 
classifier complexity, known as the Vapnik-

Chervonenkis (VC) dimension of the machine. The 
rightmost term of Eq. 12 is known as VC confidence, and 
it represents a bound upon the complexity of the ma-
chine. The minimization of the actual risk bound has 
been proposed to find the optimal width or the optimal 
kernel parameter. However, it turns to be a weak limit in 
extremely low-size data sets; it sometimes needs the pre-
vious estimation of h; it is defined for no-losses prob-
lems, which is the least common practical case; and fi-
nally, it can not yield any information about the trade-off 
parameter C. 
 

III. SVM TUNING USING THE BOOTSTRAP RESAMPLING 

 
A comprehensive formulation of the bootstrap re-

sampling for standard error and bias estimation can be 
found in [4]. It is widely used today in evaluating the 
accuracy of statistical deals, like analysis  of variance, 
regression models, and recently, Neural Network 
schemes [5]. However, it has not been taken enough ad-
vantage in tuning learning schemes, this is, in incorpo-
rating to the building process the knowledge of the na-
ture  of the estimator. This is what we are proposing 
here. 

Be a process of estimation of dependence between 
the paired data of a classification problem. The data are 
drawn from a join fdp ( )yp ,x , which is denoted: 

 
( ) ( ) ( ) ( ){ }ll yyyyp ,,,,,,, 2211 xxxVx �=→ .    (13) 

Be the estimated parameters through the SVM: 

( )θα ,ˆ Vs= ,   (14) 

where ( )θ,Vs  is the process of estimation of the SVM 

expansion α̂ . For the complete data set, the error prob-
abil i ty is estimated through the proportion of  training 
errors for the expansion, 
 

( )V,ˆˆ αtRemp = .    (15) 

A bootstrap resample is a set of data drawn from the 
training data set under their empirical distribution, this 
is, it corresponds to sampling with replacement the ob-
served pairs of data: 
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Therefore, *V will consist on elements of V appearing 
one, several or none times. The process of resampling is 
repeated for Bb ,...,1=  times. Let us consider a partition 

of V  in terms of the resample ( )b*V , such as 

 

 ( ) ( )( )bb outin
** , VVV = ,     (17) 

with ( )bin
*V  representing the subset of pairs included in 

the resample b, and ( )bout
*V  being the subset of non-

included pairs. The obtained SVM for each resample will 
be given by: 



 

( ) ( )( )θα ,ˆ
** bsb inV= . (18) 

The estimation of the final parameter on this population 
is known as bootstrap replication of the statistic: 
 

( ) ( )( )*** ,ˆˆ
inemp btbR Vα= .  (19) 

This represents an estimate of the empirical risk distribu-
tion through the B resamples. However, further advan-
tage can be taken from the actual risk estimator, obtained 
by: 

( ) ( )( )*** ,ˆˆ outbtbR Vα= .  (20) 

      The sample distribution of the replications for this 
last statistic represents an approximation to the true dis-
tribution of the estimated actual risk. The non-biased 
mean value  wil l be obtained by simply taking the repli-
cation average. This average can be obtained for a set of 
values of  the free parameters. 
 

IV. SIMULATION RESULTS 

 
We generated 11R  vectors, v , being the sum of two 

time-varying waveforms, a slow plus a fast half-rectified, 
convex parabola, between 0 and 10 seconds and sampled 
at fs=1Hz (Figure 1), as given by the formula: 

 

( ) ( ) ( ) fffsss vttkvttktv +−++−= 22       (21) 

( ) 10,,1,0| �== ttvv   (22) 

Table 1 shows the rules for the random generation of 
the centres and the t-axis interceptions. According to the 
area of the slow parabola ( 1A ) being minor or greater 

than a threshold, we assigned to every vector one of two 
classes. The threshold was set to 3. Figure 2 depicts the 
probability density function of 1A . Also, a 3% of the 

training vectors were randomly changed their correct 
labels. We generated 200 training vectors. For 500 re-
samples the average actual risk, plus standard deviation, 
were estimated and compared to the error upon 10.000 
test vectors. The process was repeated for a rank of pos-
sible values for each free parameter. 

Figure 3 shows the performance in mean error prob-
ability (bias-corrected), standard error and number of 
Support Vectors for the selection of C in the linear kernel 
(Figure 3.a), the selection of σ  in the RBF kernel (Fig-
ures 3.b and 3.c) and the selection of the polynomial de-
gree. Some remarkable facts are: 

 
1. There is a high coincidence between the shapes 

of the bootstrap estimated errors and the test er-
rors for all the kernels. 

 
2. For the linear and RBF kernels, when a doubt 

on a range of parameter values exists, the num-
ber of Support Vectors is an appropriate second 
criterion  (Figures 3.b and 3.c). 

 

 
3. The best degree for the polynomial kernel is 1, 

this is, the linear kernel. However, a non-linear 
classifier with RBF kernel yields a lower error 
probability. Then, this will be the best kernel 
among the proposed ones.  

 
Then, the choice of the kernel parameters and C bas-

ing on the bootstrap estimated actual risk closely agree 
with the results on the test set. 

 
 

 
 

Figure 1. Parabola toy example. Each vector (dotted) is the 
sampled sum of 2 parabolas, a slow (continuous) and a fast 
(dashed) component. 
 
 
 
 
 
 
 
Table 1. Parabola toy example. Distribution of the centres 
and abscisa interception of the two parabolic components 
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Figure 2. Parabola toy example. Density function of 1A  and 

class assignment. 
 
 

 
 

 
centrex  centrey  inx  iny  

Slow U[2,8] U[0,1] U[1,7] 0 

Fast 10 U[1,3] U[6,9] 0 



 

V. A REAL DATA EXAMPLE  ANALYSIS 

      
In this section we will perform a statistical analysis 

on a real set of data, comparing the use of VC-theory to 
the proposed bootstrap SVM tuning in a clinical prob-
lem, where the low size of the training data sets is a very 
common issue, due to either the cost of performing the 
measures or the non-presence of measure devices during 
the event.  

We begin drawing a short introduction to the prob-
lem: the Implantable Cardioverter Defibrillator (ICD) is 
a device for automatic recognition and treatment of ma-
lign cardiac arrhythmia in patients with high risk of sud-
den death [6,7]. Present discrimination algorithms in 
these devices lead to a high rate of malign arrhythmia 
detection to the expense of a number of unnecessary de-
livered therapy (electric shock or cardiac stimulation) at 
non-malign arrhythmia episodes. So, though their safety, 
the discrimination algorithms in ICD are still a current 
framework.  

The Initial Ventricular Activation Criterion is a re-
cently proposed idea [8], which states the analysis of the 
initial voltage changes during the ventricular depolariza-
tion; according to the nature of the electric circuit in-
volved in each type of arrhythmia, these changes will be 
different in malign and non-malign arrhythmia. This 
criterion is still been studied. 

One of the issues in the statistical analysis of the 
changes in the ventricular depolarization is the choice of 
the best electrode configuration for its relative measures. 
Four available sources in some models of ICD are de-
picted in Figure 4: 

 
1. HVA/HVB: between the subpectoral can and 

the defibrillation coil; 
 
2. HVA/P+S: between the subpectoral can and the 

sensing distant dipole; 
 

3. P-S/HVB: between the sensing proximal dipole 
and the defibrillation coil; and 

 
4. P-S/P+S: between the proximal and distant di-

pole. 
 

A set of morphological parameters have been pro-
posed for featuring these changes in the electrical activ-
ity. These parameters consisted on amplitudes, time acti-
vations and energies on the first derivative of the initial 
electrical ventricular depolarization waveform. The pa-
rameters were used for the purpose of classification be-
tween the tachycardia (T) episode and the preceding Si-
nus Rhythm (SR) or normal cardiac depolarization. We 
tested the distance between these two rhythms for each 
source through these parameters. 
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Figure 3. Parabola  toy example. Results. Mean actual 
risk and standard error for: (a) Linear kernel. Estimated 
error (up) and test set error (down) as a function of C. (b) 
RBF kernel. Estimated error (up) and test set error (down) 
as a function of σ .(c) RBF kernel. Estimated mean 
number of Support Vectors.  (d) Polinomial kernel. The 
same as (b) for the polinomial degree. 
 



 
 
 

 
 

Figure 4. Electrode configuration selection. Scheme of the 
available electrode configuration in the ICD. 

 
 
On a number of tachycardia episodes, the parame-

ters were measured from the 4 available electrode 
sources, when possible. This led to 56 records for 
HVA/HVB, 52 for HVA/P+S, 54 for P-S/HVB and 54 for 
P-S/P+S. A classifier was built in order to discriminate 
the parameter vectors measured during SR from those 
ones measured during T. We compared the next 
schemes: 

 
1. The Vapnik’ s bound, as given by Equation (13), 

on a linear kernel SVM classifier. For this pur-
pose, the empirical risk was calculated as the er-
ror ratio in the training set for each one of the 
classifiers. The structural risk (VC confidence) 
was estimated through the approximation of the 
VC-dimension by the number of  Support Vec-
tors found by the l inear classifier. The same 
value of C=10 was set for all the classifiers, 
considered heuristically appropriate. This corre-
sponded to the same trade-off between margin 
and losses among all the classifiers, given that 
the number of samples in each source is ap-
proximately the same. 

 
2. The bootstrap-estimated error probabil i ty on 

non-linear kernel (RBF) SVM classifiers. For 
this case, the gaussian width was previously de-
termined on every classifier through 20 resam-
ples of the training data set for a range of values  
in (0.1,100). The value of C was also previously 
determined through 20 resamples on every clas-
sifier, for a range of values in (0.1,500). Both 
ranges were swept through a logarithmic scale. 
The two free parameters were considered 
jointly, as far as influence between them had 
been observed.  The best pair of values was 
found recursively for each source case. 

 

The parameters were normalized by their standard 
deviation, in order to avoid the effect of large scale fea-
tures. 
 
 
 

Source ( )αempR  VCcon ( )αactR  RBF 

HVA/P+S 0.032 0.590 0.622 0.008 
P-S/HVB 0.053 0.614 0.668 0.054 
P-S/P+S 0.125 0.632 0.757 0.125 
P-S/P+S 0.231 0.623 0.854 0.102 
  
Table 2. Electrode configuration selection. Empirical risk, 
VC confidence and Vapnik’s bound on the error probabil i ty 
for a SVM with l inear kernel; empirical error probabil i ty for 
the SVM RBF kernel 
. 
 
 

Table 2 shows the results for both schemes. As it 
can be seen there: 

 
• The error probabilit ies for the linear SVM are 

sorted in growing order. This points to the fact 
that HVA/HVB is the most far-field character 
electrode configuration, P-S/P+S is the most 
near-field configuration, and the other are in-
termediate between them. So, the linear analy-
sis points to far-field sources as the most ap-
propriate for this criterion. 

 
• However, the VC confidence takes values upon 

0.5 in all the cases. Strictly speaking, these 
classifiers are worst than a coin-based choice. 
Nevertheless, the qualitative result is according 
to the empirical risk on the linear kernel. 

 
• When the RBF kernel is used, the bootstrap er-

ror yield to more realistic estimations for the 
actual risk. More, there is a reduced error in 
the P-S/P+S configuration, which points to a 
possible influence of the kernel in the error 
probabil ities. 

 
Consequently, neither the empirical risk nor the 

Vapnkik’s actual risk bound represent adequate statisti-
cal error measures, despite of their qualitative coinci-
dence. Bootstrap measures on SVM allow to perform 
non-linear analysis on low-sized data sets. 

 

VI. CONCLUSSIONS 

 
We conclude that this understanding of the use of 

the bootstrap resampling leads to an accurate estimation 
of the risk on a learning machine, and to a solid way of 
estimating the free parameters on a SVM based learning 
machine. 



VII. BIBLIOGRAPHY 

 
[1]  Vapnik, V. Statistical Learning Theory (Adaptive and Learning Sys-

tems for Signal Processing, Communications and Control). John 
Willey&Sons, 1998. 

 
[2] Schölkopf, B., Burges, C., Smola, A., editors. Advances in Kernel 

Methods-Support Vector Learning. MIT-Press. 1999. 
 
[3] Burges, C. A Tutorial on Support Vector Machines for Pattern Recog-

nition. Data Mining and Knowledge Discovery, 2(2):1-32. 1998. 
 
[4] Efron, B., and Tibshirani, R. An  Introduction to the Bootstrap. Chap-

man&Hall, 1993. 
 
[5] Tibshirani, R. A Comparison of Some Error Estimates for Neural 

Network Models. Technical Report, Dept. of  Preventive Medicine 
and Biostatistics, University of Toronto, Toronto, Ontario, 1994.  

 
[6] Singer, I. Implantable Cardioverter Defibrillator. Futura Publishing 

Co. Inc., 1994. 
 
[7] Smith, W.M., and Ideker, R.E. Automatic Implantable Cardioverter 

Debrillators. Annual Rev. Biomed. Eng., 1(1):331-46, 1999. 
 
[8] Rojo-Álvarez, J.L., Arenal, A., Artés, A., et al. Discrimination Between 

Ventricular and Supraventricular Tachycardia Based on Implantable 
Defibrillator Stored electrogram Análisis. In 47 American College of 
Cardiollogy, pag. 294-A, Atlanta, march 1998. 


